A.P. State Council of Higher Education Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.A. /B.Sc. (Hons)
Domain Subject: **MATHEMATICS**IV Year B.A./B.Sc.(Hons)— Semester – V

Max Marks: 100

Course-7B: Integral Transforms with Applications

(Skill Enhancement Course (Elective), 5 credits)

I. Learning Outcomes:

Students after successful completion of the course will be able to

- 1. Evaluate Laplace transforms of certain functions, find Laplace transforms of derivatives and of integrals.
- 2. Determine properties of Laplace transform which may be solved by application of special functions namely Dirac delta function, error function, Bessel function and periodic function.
- 3. Understand properties of inverse Laplace transforms, find inverse Laplace transforms of derivatives and of integrals.
- 4. Solve ordinary differential equations with constant/ variable coefficients by using Laplace transform method.
- 5. Comprehend the properties of Fourier transforms and solve problems related to finite Fourier transforms.
- **II. Syllabus :** (Hours: Teaching: 75 (incl. unit tests etc.05), Training: 15)

Unit – 1: Laplace Transforms- I

(15h)

- 1. Definition of Laplace transform, linearity property-piecewise continuous function.
- 2. Existence of Laplace transform, functions of exponential order and of class A.
- **3.** First shifting theorem, second shifting theorem and change of scale property.

Unit − 2: **Laplace Ttransforms- II**

(15h)

- 1. Laplace Transform of the derivatives, initial value theorem and final value theorem. Laplace transforms of integrals.
- 2. Laplace transform of tⁿ. f (t), division by t, evolution of integrals by Laplace transforms.
- 3. Laplace transform of some special functions-namely Dirac delta function, error function, Bessel function and Laplace transform of periodic function.

Unit – 3: Inverse Laplace Transforms - I

(15h)

- 1. Definition of Inverse Laplace transform, linear property
- 2. First shifting theorem, secondshifting theorem, change of scale property
- 3. Use of partial fractions.

Unit – 4: Inverse Laplace Transforms - II

- 1. Inverse Laplace transforms of derivatives, inverse Laplace transforms of integrals
- **2.** Multiplication by powers of 'p', division by 'p'.
- **3.** Convolution, convolution theorem proof and applications.

Unit – 5: Applications of Laplace Transforms

(15h)

- 1. Solutions of differential equations with constants coefficients
- 2. Solutions of differential equations with variable coefficients.
- 3. Applications of Laplace transforms to integral equations- Abel's integral equation.

III. Text Book: A.R. Vasistha, Dr. R.K. Gupta, Laplace Transforms, Krishna Prakashan Media Pvt. Ltd.Meerut.

Reference Books:

- 1.Dr. S.Sreenadh, S.Ranganatham, Dr.M.V.S.S.N.Prasad, Dr. V.Ramesh Babu, Fourier series and Integral Transforms, S. Chand & Company, Pvt. Ltd., Ram Nagar, New Delhi-110055.
- 2.M.D.Raisinghania, H.C. Saxsena, H.K. Dass, Integral Transforms, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi-110055.
- 3.Dr. J.K. Goyal, K.P. Gupta, Laplace and Fourier Transforms, Pragathi Prakashan, Meerut.
- 4.Shanthi Narayana , P.K. Mittal, A Course of Mathematical Analysis, S. Chand & Company Pvt.Ltd. Ram Nagar, New Delhi-110055.
- 5. Web resources suggested by the teacher and college librarian including reading material.

3. Co-Curricular Activities:

A) Mandatory:

- **1. For Teacher:** Teacher shall train students in the following skills for 15 hours, by taking Relevant outside data (Field/Web).
 - 1. Demonstrate on sufficient conditions for the existence of the Laplace transform of a function.
 - 2. Evaluation of Laplace transforms and methods of finding Laplace transforms.
 - 3. Evaluations of Inverse Laplace transforms and methods of finding Inverse Laplace transforms.
 - 4. Fourier transforms and solutions of integral equations.
 - 2. For Student: Fieldwork/Project work; Each student individually shall undertake Fieldwork/Project work and submit a report not exceeding 10 pages in the given format on the work-done in the areas like thefollowing, by choosing any one of the aspects.
 - 1. Going through the web sources like Open Educational Resources on Applications of Laplace transforms and Inverse Laplace transforms to find solutions of ordinary differential equations with constant /variable coefficients and make conclusions. (or)
 - 2. Going through the web sources like Open Educational Resources on Applications of convolution theorem to solve integral equations and make conclusions. (or)
 - 3. Going through the web source like Open Educational Resources on Applications of Fourier transforms to solve integral equations and make conclusions.

- 4. **Suggested Format for Fieldwork/Project work Report**: Title page, Student Details, Index page, Stepwise work-done, Findings, Conclusions and Acknowledgements.
- 5. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Assignments/collection of data, Seminar, Quiz, Group discussions/Debates
- 2. Visits to research organizations, Statistical Cells, Universities, ISI etc.
- 3. Invited lectures and presentations on related topics by experts in the specified area.
- 4. Suggested Question Paper Pattern:

Max.Marks:75 Time:3 hrs

(Answer any **five questions**. Each answer carries 5 Marks) 5 X 5=25

- 1. Find L{(sint-cost)²}
- 2. Find $L\{e^t \cos^2 t\}$
- 3. Find $L\{t^2 \cos 3t\}$

4. Find
$$L\left\{\frac{1-e^t}{t}\right\}$$

5. Find
$$L^{-1}\left\{\frac{s+1}{s^2+6s+25}\right\}$$

6. Find
$$L^{-1} \left\{ \frac{e^{-5s}}{(s-2)^4} \right\}$$

7. Find
$$L^{-1} \left\{ log \left(1 + \frac{1}{s^2} \right) \right\}$$

8. Find
$$L^{-1}\left\{\frac{1}{s^3(s^2+1)}\right\}$$

9. Solve
$$(D^2+2D+2)$$
 y = 0, if y=Dy=1 when t=0.

10. Solve the integral equation F (t) =
$$1+2\int_{0}^{t} F(t-u)e^{-2u}du$$

(Answer ALL the questions. Each question carries 10 Marks)

11. Find L $\{\sin \sqrt{t}\}$

(OR)

- 12. State and prove second shifting theorem in Laplace Transform
- 13. Prove that $\int_{0}^{\infty} t^3 e^{-t}$ sint dt = 0

(OR

- 14. Prove that L $\{J_0(t)\}=\frac{1}{\sqrt{s^2+1}}$ and hence deduce that L $\{J_0(at)\}=\frac{1}{\sqrt{s^2+a^2}}$
- 15. Find $L^{-1} \left\{ \frac{4s+5}{(s-4)^2(s+3)} \right\}$

(OR)

16. Find
$$L^{-1} \left\{ \frac{s^2}{s^4 + 4a^4} \right\}$$

17. Find $L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)}\right\}$ by using convolution theorem

(OR)

- 18. State and prove convolution theorem.
- 19. Solve (D²+9) y = cos2t, if y (0) =1, y $(\frac{\Pi}{2})$ =-1.

(OR)

20. Solve the integral equation F (t) = $e^{-t} - 2 \int_{0}^{t} \cos(t-u) F(u) du$.

Recommended Question Paper Pattern and Model BLUE PRINT FOR QUESTION PAPER PATTERN

Semester - V

Unit	S.A.Q(including choice)	E.Q(including choice)	Total Marks
I	2	2	30
II	2	2	30
III	2	2	30
IV	2	2	30
V	2	2	30
	10	10	150

S.A.Q. = Short answer questions (5 marks)

E.Q. = Essay questions (10 marks)

Short answer questions $: 5 \times 5 M = 25 M$

Essay questions : $5 \times 10 M = 50 M$

.....

Total Marks = 75 M